归并排序详解及应用
归并排序详解及应用
labuladong归并排序详解及应用
读完本文,你不仅学会了算法套路,还可以顺便解决如下题目:
一直都有很多读者说,想让我用 框架思维 讲一讲基本的排序算法,我觉得确实得讲讲,毕竟学习任何东西都讲求一个融会贯通,只有对其本质进行比较深刻的理解,才能运用自如。
本文就先讲归并排序,给一套代码模板,然后讲讲它在算法问题中的应用。阅读本文前我希望你读过前文 手把手刷二叉树(纲领篇)。
我在 手把手刷二叉树(第一期) 讲二叉树的时候,提了一嘴归并排序,说归并排序就是二叉树的后序遍历,当时就有很多读者留言说醍醐灌顶。
知道为什么很多读者遇到递归相关的算法就觉得烧脑吗?因为还处在「看山是山,看水是水」的阶段。
就说归并排序吧,如果给你看代码,让你脑补一下归并排序的过程,你脑子里会出现什么场景?
这是一个数组排序算法,所以你脑补一个数组的 GIF,在那一个个交换元素?如果是这样的话,那格局就低了。
但如果你脑海中浮现出的是一棵二叉树,甚至浮现出二叉树后序遍历的场景,那格局就高了,大概率掌握了我经常强调的 框架思维,用这种抽象能力学习算法就省劲多了。
那么,归并排序明明就是一个数组算法,和二叉树有什么关系?接下来我就具体讲讲。
🌟
#算法思路
就这么说吧,所有递归的算法,你甭管它是干什么的,本质上都是在遍历一棵(递归)树,然后在节点(前中后序位置)上执行代码,你要写递归算法,本质上就是要告诉每个节点需要做什么。
你看归并排序的代码框架:
java 🟢cpp 🤖python 🤖go 🤖javascript 🤖
// 定义:排序 nums[lo..hi] |
看这个框架,也就明白那句经典的总结:归并排序就是先把左半边数组排好序,再把右半边数组排好序,然后把两半数组合并。
上述代码和二叉树的后序遍历很像:
java 🟢cpp 🤖python 🤖go 🤖javascript 🤖
/* 二叉树遍历框架 */ |
再进一步,你联想一下求二叉树的最大深度的算法代码:
java 🟢cpp 🤖python 🤖go 🤖javascript 🤖
// 定义:输入根节点,返回这棵二叉树的最大深度 |
是不是更像了?
前文 手把手刷二叉树(纲领篇) 说二叉树问题可以分为两类思路,一类是遍历一遍二叉树的思路,另一类是分解问题的思路,根据上述类比,显然归并排序利用的是分解问题的思路(分治算法)。
归并排序的过程可以在逻辑上抽象成一棵二叉树,树上的每个节点的值可以认为是 nums[lo..hi]
,叶子节点的值就是数组中的单个元素:
然后,在每个节点的后序位置(左右子节点已经被排好序)的时候执行 merge
函数,合并两个子节点上的子数组:
这个 merge
操作会在二叉树的每个节点上都执行一遍,执行顺序是二叉树后序遍历的顺序。
后序遍历二叉树大家应该已经烂熟于心了,就是下图这个遍历顺序:
结合上述基本分析,我们把 nums[lo..hi]
理解成二叉树的节点,sort
函数理解成二叉树的遍历函数,整个归并排序的执行过程就是以下 GIF 描述的这样:
这样,归并排序的核心思路就分析完了,接下来只要把思路翻译成代码就行。
#代码实现
只要拥有了正确的思维方式,理解算法思路是不困难的,但把思路实现成代码,也很考验一个人的编程能力。
毕竟算法的时间复杂度只是一个理论上的衡量标准,而算法的实际运行效率要考虑的因素更多,比如应该避免内存的频繁分配释放,代码逻辑应尽可能简洁等等。
经过对比,《算法 4》中给出的归并排序代码兼具了简洁和高效的特点,所以我们可以参考书中给出的代码作为归并算法模板:
class Merge { |
有了之前的铺垫,这里只需要着重讲一下这个 merge
函数。
sort
函数对 nums[lo..mid]
和 nums[mid+1..hi]
递归排序完成之后,我们没有办法原地把它俩合并,所以需要 copy 到 temp
数组里面,然后通过类似于前文 单链表的六大技巧 中合并有序链表的双指针技巧将 nums[lo..hi]
合并成一个有序数组:
注意我们不是在 merge
函数执行的时候 new 辅助数组,而是提前把 temp
辅助数组 new 出来了,这样就避免了在递归中频繁分配和释放内存可能产生的性能问题。
贴一个归并排序过程的可视化动画,方便大家理解算法运行的过程:
🌈 代码可视化动画 🌈
#复杂度分析
再说一下归并排序的时间复杂度,虽然大伙儿应该都知道是 O(NlogN)
,但不见得所有人都知道这个复杂度怎么算出来的。
前文 动态规划详解 说过递归算法的复杂度计算,就是子问题个数 x 解决一个子问题的复杂度。对于归并排序来说,时间复杂度显然集中在 merge
函数遍历 nums[lo..hi]
的过程,但每次 merge
输入的 lo
和 hi
都不同,所以不容易直观地看出时间复杂度。
merge
函数到底执行了多少次?每次执行的时间复杂度是多少?总的时间复杂度是多少?这就要结合之前画的这幅图来看:
执行的次数是二叉树节点的个数,每次执行的复杂度就是每个节点代表的子数组的长度,所以总的时间复杂度就是整棵树中「数组元素」的个数。
所以从整体上看,这个二叉树的高度是 logN
,其中每一层的元素个数就是原数组的长度 N
,所以总的时间复杂度就是 O(NlogN)
。
力扣第 912 题「排序数组open in new window」就是让你对数组进行排序,我们可以直接套用归并排序代码模板:
java 🟢cpp 🤖python 🤖go 🤖javascript 🤖
class Solution { |
#其他应用
除了最基本的排序问题,归并排序还可以用来解决力扣第 315 题「计算右侧小于当前元素的个数open in new window」:
315. 计算右侧小于当前元素的个数 | 力扣 | LeetCode |
给你一个整数数组 nums
,按要求返回一个新数组 counts
。数组 counts
有该性质: counts[i]
的值是 nums[i]
右侧小于 nums[i]
的元素的数量。
示例 1:
输入:nums = [5,2,6,1]
输出:[2,1,1,0]
解释:
5 的右侧有 2 个更小的元素 (2 和 1)
2 的右侧仅有 1 个更小的元素 (1)
6 的右侧有 1 个更小的元素 (1)
1 的右侧有 0 个更小的元素
示例 2:
输入:nums = [-1] 输出:[0]
示例 3:
输入:nums = [-1,-1] 输出:[0,0]
提示:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
我用比较数学的语言来描述一下(方便和后续类似题目进行对比),题目让你求出一个 count
数组,使得:
count[i] = COUNT(j) where j > i and nums[j] < nums[i] |
拍脑袋的暴力解法就不说了,嵌套 for 循环,平方级别的复杂度。
这题和归并排序什么关系呢,主要在 merge
函数,我们在使用 merge
函数合并两个有序数组的时候,其实是可以知道一个元素 nums[i]
后边有多少个元素比 nums[i]
小的。
具体来说,比如这个场景:
这时候我们应该把 temp[i]
放到 nums[p]
上,因为 temp[i] < temp[j]
。
但就在这个场景下,我们还可以知道一个信息:5 后面比 5 小的元素个数就是 左闭右开区间 [mid + 1, j)
中的元素个数,即 2 和 4 这两个元素:
**换句话说,在对 nums[lo..hi]
合并的过程中,每当执行 nums[p] = temp[i]
时,就可以确定 temp[i]
这个元素后面比它小的元素个数为 j - mid - 1
**。
当然,nums[lo..hi]
本身也只是一个子数组,这个子数组之后还会被执行 merge
,其中元素的位置还是会改变。但这是其他递归节点需要考虑的问题,我们只要在 merge
函数中做一些手脚,叠加每次 merge
时记录的结果即可。
发现了这个规律后,我们只要在 merge
中添加两行代码即可解决这个问题,看解法代码:
java 🟢cpp 🤖python 🤖go 🤖javascript 🤖
class Solution { |
因为在排序过程中,每个元素的索引位置会不断改变,所以我们用一个 Pair
类封装每个元素及其在原始数组 nums
中的索引,以便 count
数组记录每个元素之后小于它的元素个数。
接下来我们再看几道原理类似的题目,都是通过给归并排序的 merge
函数加一些私货完成目标。
看一下力扣第 493 题「翻转对open in new window」:
493. 翻转对 | 力扣 | LeetCode |
给定一个数组 nums
,如果 i < j
且 nums[i] > 2*nums[j]
我们就将 (i, j)
称作一个重要翻转对。
你需要返回给定数组中的重要翻转对的数量。
示例 1:
输入: [1,3,2,3,1] 输出: 2
示例 2:
输入: [2,4,3,5,1] 输出: 3
注意:
- 给定数组的长度不会超过
50000
。 - 输入数组中的所有数字都在32位整数的表示范围内。
我把这道题换个表述方式,你注意和上一道题目对比:
请你先求出一个 count
数组,其中:
count[i] = COUNT(j) where j > i and nums[i] > 2*nums[j] |
然后请你求出这个 count
数组中所有元素的和。
你看,这样说其实和题目是一个意思,而且和上一道题非常类似,只不过上一题求的是 nums[i] > nums[j]
,这里求的是 nums[i] > 2*nums[j]
罢了。
所以解题的思路当然还是要在 merge
函数中做点手脚,当 nums[lo..mid]
和 nums[mid+1..hi]
两个子数组完成排序后,对于 nums[lo..mid]
中的每个元素 nums[i]
,去 nums[mid+1..hi]
中寻找符合条件的 nums[j]
就行了。
看一下我们对 merge
函数的改造:
java 🟢cpp 🤖python 🤖go 🤖javascript 🤖
// 记录「翻转对」的个数 |
不过呢,这段代码提交会超时,毕竟额外添加了一个嵌套 for 循环。怎么进行优化呢,注意子数组 nums[lo..mid]
是排好序的,也就是 nums[i] <= nums[i+1]
。
所以,对于 nums[i], lo <= i <= mid
,我们在找到的符合 nums[i] > 2*nums[j]
的 nums[j], mid+1 <= j <= hi
,也必然也符合 nums[i+1] > 2*nums[j]
。
换句话说,我们不用每次都傻乎乎地去遍历整个 nums[mid+1..hi]
,只要维护一个开区间边界 end
,维护 nums[mid+1..end-1]
是符合条件的元素即可。
看最终的解法代码:
java 🟢cpp 🤖python 🤖go 🤖javascript 🤖
class Solution { |
如果你能够理解这道题目,我们最后来看一道难度更大的题目,力扣第 327 题「区间和的个数open in new window」:
327. 区间和的个数 | 力扣 | LeetCode |
给你一个整数数组 nums
以及两个整数 lower
和 upper
。求数组中,值位于范围 [lower, upper]
(包含 lower
和 upper
)之内的 区间和的个数 。
区间和 S(i, j)
表示在 nums
中,位置从 i
到 j
的元素之和,包含 i
和 j
(i
≤ j
)。
输入:nums = [-2,5,-1], lower = -2, upper = 2 输出:3 解释:存在三个区间:[0,0]、[2,2] 和 [0,2] ,对应的区间和分别是:-2 、-1 、2 。
示例 2:
输入:nums = [0], lower = 0, upper = 0 输出:1
提示:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
-105 <= lower <= upper <= 105
- 题目数据保证答案是一个 32 位 的整数
简单说,题目让你计算元素和落在 [lower, upper]
中的所有子数组的个数。
拍脑袋的暴力解法我就不说了,依然是嵌套 for 循环,这里还是说利用归并排序实现的高效算法。
首先,解决这道题需要快速计算子数组的和,所以你需要阅读前文 前缀和数组技巧,创建一个前缀和数组 preSum
来辅助我们迅速计算区间和。
我继续用比较数学的语言来表述下这道题,题目让你通过 preSum
数组求一个 count
数组,使得:
count[i] = COUNT(j) where lower <= preSum[j] - preSum[i] <= upper |
然后请你求出这个 count
数组中所有元素的和。
你看,这是不是和题目描述一样?preSum
中的两个元素之差其实就是区间和。
有了之前两道题的铺垫,我直接给出这道题的解法代码吧,思路见注释:
java 🟢cpp 🤖python 🤖go 🤖javascript 🤖
class Solution { |
我们依然在 merge
函数合并有序数组之前加了一些逻辑,如果看过前文 滑动窗口核心框架,这个效率优化有点类似维护一个滑动窗口,让窗口中的元素和 nums[i]
的差落在 [lower, upper]
中。
归并排序相关的题目到这里就讲完了,你现在回头体会下我在本文开头说那句话:
所有递归的算法,本质上都是在遍历一棵(递归)树,然后在节点(前中后序位置)上执行代码。你要写递归算法,本质上就是要告诉每个节点需要做什么。
比如本文讲的归并排序算法,递归的 sort
函数就是二叉树的遍历函数,而 merge
函数就是在每个节点上做的事情,有没有品出点味道?
最后总结一下吧,本文从二叉树的角度讲了归并排序的核心思路和代码实现,同时讲了几道归并排序相关的算法题。这些算法题其实就是归并排序算法逻辑中夹杂一点私货,但仍然属于比较难的,你可能需要亲自做一遍才能理解。
那我最后留一个思考题吧,下一篇文章我会讲快速排序,你是否能够尝试着从二叉树的角度去理解快速排序?如果让你用一句话总结快速排序的逻辑,你怎么描述?
好了,答案在下篇文章 快速排序详解及应用 揭晓。