设计模式之美----适配器模式

设计模式之美—适配器模式

本文将对责任链模式(职责链模式)分为四个部分进行讲解

  • 原理
  • 实现
  • 应用
  • 练习

让大家系统全面的学会使用责任链模式, 并应用到开发中去

原理篇

一般来说,适配器模式可以看作一种“补偿模式”,用来补救设计上的缺陷。

适配器模式的英文翻译是 Adapter Design Pattern, 在GoF的设计模式中的定义如下

Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle the request. Chain the receiving objects and pass the request along the chain until an object handles it.

​ “将请求的发送和接收解耦,让多个接收对象都有机会处理这个请求。将这些接收对象串成一条链,并沿着这条链传递这个请求,直到链上的某个接收对象能够处理它为止。”

​ 实际上就是将请求通过类似链表的结构, 通过结点处理并线性的传递下去,直到请求完成或者没有下一个结点

​ 这里的结点是指单个处理请求的对象, 接受上一个结点处理后的结果并在处理后, 传递给下一个结点或者请求完成结束处理, 因为每个结点都承担着细粒度的职责, 所以称为责任链模式

实现篇

职责链模式的实现分为三个部分, 分别是目标接口(Target) , 适配器类(Adaptee), 适配器类(Adapter)

  • 目标接口(Target):当前系统业务所期待的接口,它可以是抽象类或接口

  • 适配者类(Adaptee):它是被访问和适配的现存组件库中的组件接口。

  • 适配器类(Adapter):它是一个转换器,通过继承或引用适配者的对象,把适配者接口转换成目标接口,让客户按目标接口的格式访问适配者。

适配器模式有两种实现方式

  • 类适配器模式
  • 对象适配器模式

类适配器使用继承关系进行实现, 对象适配器使用组合关系进行实现如下

// 类适配器: 基于继承
public interface ITarget {
void f1();
void f2();
void fc();
}
public class Adaptee {
public void fa() { //... }
public void fb() { //... }
public void fc() { //... }
}
public class Adaptor extends Adaptee implements ITarget {
public void f1() {
super.fa();
}

public void f2() {
//...重新实现f2()...
}

// 这里fc()不需要实现,直接继承自Adaptee,这是跟对象适配器最大的不同点
}
// 对象适配器:基于组合
public interface ITarget {
void f1();
void f2();
void fc();
}
public class Adaptee {
public void fa() { //... }
public void fb() { //... }
public void fc() { //... }
}
public class Adaptor implements ITarget {
private Adaptee adaptee;

public Adaptor(Adaptee adaptee) {
this.adaptee = adaptee;
}

public void f1() {
adaptee.fa(); //委托给Adaptee
}

public void f2() {
//...重新实现f2()...
}

public void fc() {
adaptee.fc();
}
}

如何选择这两种设计模式呢? 判断标准有两个 一种时Adaptee接口的个数, 另一个是Adaptee和Target接口的契合程度

  • 如果 Adaptee 接口并不多,那两种实现方式都可以(通常使用对象适配器, 因为组合优于继承)
  • 如果 Adaptee 接口很多,而且 Adaptee 和 ITarget 接口定义大部分都相同,那我们推荐使用类适配器,因为 Adaptor 复用父类 Adaptee 的接口,比起对象适配器的实现方式,Adaptor 的代码量要少一些。
  • 如果 Adaptee 接口很多,而且 Adaptee 和 ITarget 接口定义大部分都不相同,那我们推荐使用对象适配器,因为组合结构相对于继承更加灵活。

应用篇

​ 适配器模式的原理和实现都讲完了, 都不复杂, 那么我们该在哪些情况下使用适配器模式呢?

​ 就如同定义一般, 适配器模式的应用场景其实就是”接口不兼容”, 具体细化可以分为这么5种场景

  • 封装有缺陷的接口设计
  • 统一多个类的接口设计
  • 替换依赖的外部系统
  • 兼容老版本接口
  • 适配不同格式的数据

封装有缺陷的接口设计

假如我们依赖的外部接口在设计上存在缺陷(大量静态方法, 方法参数过多, 性能低下, 方法名丑陋), 引入后会影响我们自身代码的可维护性, 为了隔离这种设计上的缺陷, 我们希望对提供的接口进行二次封装, 抽象出更好的接口设计, 这里我们可以使用适配器模式

public class CD { //这个类来自外部sdk,我们无权修改它的代码
//...
public static void staticFunction1() { //... }

public void uglyNamingFunction2() { //... }
public void tooManyParamsFunction3(int paramA, int paramB, ...) { //... }

public void lowPerformanceFunction4() { //... }
}
// 使用适配器模式进行重构
public class ITarget {
void function1();
void function2();
void fucntion3(ParamsWrapperDefinition paramsWrapper);
void function4();
//...
}
// 注意:适配器类的命名不一定非得末尾带Adaptor
public class CDAdaptor extends CD implements ITarget {
//...
public void function1() {
super.staticFunction1();
}

public void function2() {
super.uglyNamingFucntion2();
}

public void function3(ParamsWrapperDefinition paramsWrapper) {
super.tooManyParamsFunction3(paramsWrapper.getParamA(), ...);
}

public void function4() {
//...reimplement it...
}
}

统一多个类的接口设计

某个功能的实现依赖多个外部系统(或者说类)。通过适配器模式,将它们的接口适配为统一的接口定义,然后我们就可以使用多态的特性来复用代码逻辑。

假设我们的系统要对用户输入的文本内容做敏感词过滤,为了提高过滤的召回率,我们引入了多款第三方敏感词过滤系统,依次对用户输入的内容进行过滤,过滤掉尽可能多的敏感词。但是,每个系统提供的过滤接口都是不同的。这就意味着我们没法复用一套逻辑来调用各个系统。这个时候,我们就可以使用适配器模式,将所有系统的接口适配为统一的接口定义,这样我们可以复用调用敏感词过滤的代码。

public class ASensitiveWordsFilter { // A敏感词过滤系统提供的接口
//text是原始文本,函数输出用***替换敏感词之后的文本
public String filterSexyWords(String text) {
// ...
}

public String filterPoliticalWords(String text) {
// ...
}
}
public class BSensitiveWordsFilter { // B敏感词过滤系统提供的接口
public String filter(String text) {
//...
}
}
public class CSensitiveWordsFilter { // C敏感词过滤系统提供的接口
public String filter(String text, String mask) {
//...
}
}
// 未使用适配器模式之前的代码:代码的可测试性、扩展性不好
public class RiskManagement {
private ASensitiveWordsFilter aFilter = new ASensitiveWordsFilter();
private BSensitiveWordsFilter bFilter = new BSensitiveWordsFilter();
private CSensitiveWordsFilter cFilter = new CSensitiveWordsFilter();

public String filterSensitiveWords(String text) {
String maskedText = aFilter.filterSexyWords(text);
maskedText = aFilter.filterPoliticalWords(maskedText);
maskedText = bFilter.filter(maskedText);
maskedText = cFilter.filter(maskedText, "***");
return maskedText;
}
}
// 使用适配器模式进行改造
public interface ISensitiveWordsFilter { // 统一接口定义
String filter(String text);
}
public class ASensitiveWordsFilterAdaptor implements ISensitiveWordsFilter {
private ASensitiveWordsFilter aFilter;
public String filter(String text) {
String maskedText = aFilter.filterSexyWords(text);
maskedText = aFilter.filterPoliticalWords(maskedText);
return maskedText;
}
}
//...省略BSensitiveWordsFilterAdaptor、CSensitiveWordsFilterAdaptor...
// 扩展性更好,更加符合开闭原则,如果添加一个新的敏感词过滤系统,
// 这个类完全不需要改动;而且基于接口而非实现编程,代码的可测试性更好。
public class RiskManagement {
private List<ISensitiveWordsFilter> filters = new ArrayList<>();

public void addSensitiveWordsFilter(ISensitiveWordsFilter filter) {
filters.add(filter);
}

public String filterSensitiveWords(String text) {
String maskedText = text;
for (ISensitiveWordsFilter filter : filters) {
maskedText = filter.filter(maskedText);
}
return maskedText;
}
}

替换依赖的外部系统

当我们把项目中依赖的一个外部系统替换为另一个外部系统的时候,利用适配器模式,可以减少对代码的改动。具体的代码示例如下所示

// 外部系统A
public interface IA {
//...
void fa();
}
public class A implements IA {
//...
public void fa() { //... }
}
// 在我们的项目中,外部系统A的使用示例
public class Demo {
private IA a;
public Demo(IA a) {
this.a = a;
}
//...
}
Demo d = new Demo(new A());
// 将外部系统A替换成外部系统B
public class BAdaptor implemnts IA {
private B b;
public BAdaptor(B b) {
this.b= b;
}
public void fa() {
//...
b.fb();
}
}
// 借助BAdaptor,Demo的代码中,调用IA接口的地方都无需改动,
// 只需要将BAdaptor如下注入到Demo即可。
Demo d = new Demo(new BAdaptor(new B()));

兼容老版本接口

在做版本升级的时候,对于一些要废弃的接口,我们不直接将其删除,而是暂时保留,并且标注为 deprecated,并将内部实现逻辑委托为新的接口实现。这样做的好处是,让使用它的项目有个过渡期,而不是强制进行代码修改。这也可以粗略地看作适配器模式的一个应用场景。同样,我还是通过一个例子,来进一步解释一下。

JDK1.0 中包含一个遍历集合容器的类 Enumeration。JDK2.0 对这个类进行了重构,将它改名为 Iterator 类,并且对它的代码实现做了优化。但是考虑到如果将 Enumeration 直接从 JDK2.0 中删除,那使用 JDK1.0 的项目如果切换到 JDK2.0,代码就会编译不通过。为了避免这种情况的发生,我们必须把项目中所有使用到 Enumeration 的地方,都修改为使用 Iterator 才行。

单独一个项目做 Enumeration 到 Iterator 的替换,勉强还能接受。但是,使用 Java 开发的项目太多了,一次 JDK 的升级,导致所有的项目不做代码修改就会编译报错,这显然是不合理的。这就是我们经常所说的不兼容升级。为了做到兼容使用低版本 JDK 的老代码,我们可以暂时保留 Enumeration 类,并将其实现替换为直接调用 Itertor。代码示例如下所示:

public class Collections {
public static Emueration emumeration(final Collection c) {
return new Enumeration() {
Iterator i = c.iterator();

public boolean hasMoreElments() {
return i.hashNext();
}

public Object nextElement() {
return i.next():
}
}
}
}

适配不同格式的数据

前面我们讲到,适配器模式主要用于接口的适配,实际上,它还可以用在不同格式的数据之间的适配。比如,把从不同征信系统拉取的不同格式的征信数据,统一为相同的格式,以方便存储和使用。再比如,Java 中的 Arrays.asList() 也可以看作一种数据适配器,将数组类型的数据转化为集合容器类型。

List<String> stooges = Arrays.asList("Larry", "Moe", "Curly");

代理、桥接、装饰器、适配器 4 种设计模式的区别

代理、桥接、装饰器、适配器,这 4 种模式是比较常用的结构型设计模式。它们的代码结构非常相似。笼统来说,它们都可以称为 Wrapper 模式,也就是通过 Wrapper 类二次封装原始类。

代理模式:代理模式在不改变原始类接口的条件下,为原始类定义一个代理类,主要目的是控制访问,而非加强功能,这是它跟装饰器模式最大的不同。

桥接模式:桥接模式的目的是将接口部分和实现部分分离,从而让它们可以较为容易、也相对独立地加以改变。

装饰器模式:装饰者模式在不改变原始类接口的情况下,对原始类功能进行增强,并且支持多个装饰器的嵌套使用。

适配器模式:适配器模式是一种事后的补救策略。适配器提供跟原始类不同的接口,而代理模式、装饰器模式提供的都是跟原始类相同的接口。

练习篇

以OSS服务为例

OSS服务提供方可能是阿里云OOS, 京东云OSS, 腾讯云OSS这样的第三方服务, 也可以是自建的Minio对象存储服务

但无论是第三方提供的OSS服务还是MinioOSS, 服务jar包对外提供服务的接口大不相同

而随着我们业务的发展, 第三方服务提供方可能产生变化

为此, 我们不能将第三方服务提供的接口直接耦合进代码中

合适的方式是我们自定义出一个需求接口(Target), 通过适配器模式

将不同服务提供方提供的接口(Adaptee)适配到我们的需求接口(Target)中

这样我们的Service层就可以只与需求接口(Target)耦合, 即使第三方服务提供商发生变化, 我们只需要切换相应的代理类即可

Service层的逻辑不需要发生改动

此处(Service与代理类是组合关系, 代理类提供更细粒度的OSS功能)


参考:

设计模式之美 (geekbang.org)

[重学 Java 设计模式:实战责任链模式「模拟618电商大促期间,项目上线流程多级负责人审批场景」 | 小傅哥 bugstack 虫洞栈](